Extreme centennial-scale warming phases switch abruptly to a cooling phase

Extreme centennial-scale warming phases switch abruptly to a cooling phase

Figures A) Thirty-nine trough-to-peak temperature rises exceeding 0.990C (red segments) between 7980 years ago and 1960 were extracted from the Greenland ice core for analysis. To help visualize statistical outliers, upper/lower Bollinger bands (pale grey) are used to highlight the peaks and troughs falling outside two standard deviations (95% confidence limits relative to a 60-period moving average, black line). The 39 trough-to-peak rises (warming phases) were not normally distributed and were therefore stratified into two groups (Group 2 ≤ 1.770C and Group 1 ≥ 1.770C) based on goodness-of-fit and outlier tests. The outlier test highlighted that those peaks rising more than 1.770C were significant outliers, and that the 2.870C rise from 1700-1940 was the biggest outlier or most extreme warming phase. This stratification yielded two normally distributed groups that were significantly different from one another. B) This figure graphically displays the 39 trough-to-peak warming phases (rebased) plus a grafted peak +2.810C (1840-2016 CE). Group 1 outliers are blue and red (extreme outliers).[i]

Groups 1 and 2 were also compared for their magnitude of temperature decline from the temperature peak upon climate switching, and the time taken to reach the first post-peak and the final trough. Group 1 (the big outlier peaks ≥ 1.770C) dropped rapidly to its maximum decline of 1.920C within 40 years, whereas Group 2 declined 1.030C in a similar timeframe. This difference in temperature decline was statistically significant (see the citation).[ii]

The conclusion I drew from this analysis was two-fold. Firstly, there is a greater probability the climate will switch back to a cooling phase than continuing its rise throughout the 21st century. Secondly, the bigger the trough-to-peak warming phase, the greater the magnitude of temperature drop and the more abruptly it falls from peak-to-trough after the climate switches (i.e., within 40 years). The implication for this current 1700-2016 most extreme warming phase is that the climate will switch back to a cooling phase, and the temperature will decline abruptly.

Interestingly, some of the Arctic’s coldest periods, biggest glacier advances, and important rapid cooling events since the Holocene Climate Optimum are included in Group 1.[iii],[iv],[v] These rapid climate change events triggered major famines and decimated ancient human civilizations. The 4,200-year event, included in Group 1, is well studied and was associated with the collapse of Egypt’s Old Kingdom,[vi],[vii] Mesopotamia’s Akkadian Empire,[viii] and the Indus Valley (or Harappan) Culture.[ix]

The 4,200-year rapid climate change event was characterized by a deep temperature trough preceding this event, with the temperature then rising from trough-to-peak by 2.440C. This was the Holocene’s second biggest trough-to-peak outlier warming phase. This high temperature peak (higher than today) then abruptly switched to a cooling phase, and civilizations collapsed. Of all the large-scale climate fluctuations since the Holocene Climate Optimum (as revealed by the Greenland ice core data), this 4.2-kiloyear centennial-scale climate oscillation is the one most similar to the 1700-2016 trough-to-peak warming phase.

Click on this page and download a free copy of my book “Revolution: Ice Age Re-Entry,” and read more about this topic in Chapter 4.

[i]       Data: (1) B.M. Vinther et al., 2009, “Holocene thinning of the Greenland ice sheet.” Nature, Vol. 461, pp. 385-388, 17 September 2009. National Centers for Environmental Information, NESDIS, NOAA, U.S. Department of Commerce. Greenland Ice Sheet Holocene d18O, Temperature, and Surface Elevation. doi:10.1038/nature08355. https://www.ncdc.noaa.gov/paleo-search/study/11148. Downloaded 05/05/2018. (2) HadCRUT4 near surface temperature data set for the Northern Hemisphere. http://www.metoffice.gov.uk/hadobs/hadcrut4/data/current/download.html. Downloaded 25 July 2018. Personal Research: All 39 climate trough-to-peak temperature rises exceeding +0.990C, between 5980 BCE and 1940 CE were extracted from the temperature data, derived from the Greenland ice core, for group analysis (range, +0.990C to +2.870C, average 77.4 years trough-to-peak, n=39). These trough-to-peak temperature increases selected trough-to-peaks to start from the deepest time point in the maximum trough preceding the tallest peak. A goodness-of-fit test of all 39 trough-to-peak temperature rises showed that the data did not follow a normal distribution. This indicates the possibility that more than one global warming process may be involved with the bigger climate oscillation outliers (i.e., an extreme grand solar maxima). Results: Prior to stratifying the data an Iglewicz and Hoaglin’s robust test (two-sided test) for multiple outliers was performed using a modified Z score of ≥1.5 and ≥5 as the outlier criteria. The modified Z score of ≥1.5 highlighted significant outliers above +1.770C. A higher modified Z score of ≥5 yielded the most extreme outlier the +2.870C trough-to-peak between 1700 and 1940. Given the outliers that were revealed, the data was stratified into two groups (0.990C – 1.770C or ≥ 1.770C). This stratification yielded 2 normally distributed groups (Group-1, N=5, Group-2 N=34), that were, statistically, significantly different from one another (unpaired Welch T-Test, 2-tailed P-value = 0.007). Group 1’s smallest temperature rise was 0.210C greater than Group 2’s largest temperature rise, highlighting the gap between the two groups. On the basis of the above, the peak-to-trough temperature rise from 1700 to 1940 (+2.870C) was confirmed as the most significant outlier. This process was repeated for the grafted peak from 1840-2016 (+2.810C) as detailed in Figure 4.1. Group-1 swapped the +2.870C with the +2.810C, which was also statistically, significantly different from Group-2 (unpaired Welch T-Test, two-sided P-value = 0.0061). Conclusion: Group-1 (N=5) composed of trough-to-peak outliers ≥ 1.770C were significantly larger global warmings than Group-2 (N=34), and the +2.870C or +2.810C were the largest outliers.

[ii]      Data: (1) B.M. Vinther et al., 2009, “Holocene thinning of the Greenland ice sheet.” Nature, Vol. 461, pp. 385-388, 17 September 2009. National Centers for Environmental Information, NESDIS, NOAA, U.S. Department of Commerce. Greenland Ice Sheet Holocene d18O, Temperature, and Surface Elevation. doi:10.1038/nature08355. https://www.ncdc.noaa.gov/paleo-search/study/11148. Downloaded 05/05/2018. Personal Research: Groups 1 and 2 (previous citation) were compared by their magnitudes of decline from the temperature peak to see if there was a difference between them once the climate switched to a cooling phase. The time to reach the first post-peak trough, and to their maximum troughs was calculated. Each group had a normal distribution (d’Agostino-Pearson test and Shapiro-Wilks test: P>0.05) but a different variance. As such a Welch T-test (unpaired) was used to assess group differences. Results: Group 1 (≥1.770C trough-to-peak) showed a mean temperature decline at the 1st trough after the peak of 1.920C versus Group 2’s (≤1.770C trough-to-peak) mean temperature decline of 1.030C, which represented a statistically significant difference in temperature decline over Group 1 (2-tailed P-value = 0.0433). Group 1 showed a mean temperature decline at the maximum trough after the peak of 1.920C versus Group 2’s mean temperature decline of 1.230C, but this difference was not significantly different (-0.690C, P-value 0.0784). Moreover, Group 1 rapidly declined such that its first post-peak trough was the same as its maximum trough i.e., Group 1 temperature fell abruptly. Group 2 showed a difference between its first and maximum trough of -0.200C, which was significantly different (P-value = 0.001928). Group 1 took two intervals (i.e., 45 years) to drop -1.920C with its first and maximum trough being the same (-1.920C). By contrast, Group 2 took on mean 1.82 intervals (i.e., 36 years) to reach its first trough and 3.15 intervals (i.e., 63 years) to reach its deepest trough. Conclusion: The higher the preceding trough-to-peak temperature rise (statistical outlier, or tall temperature peaks) the greater and more abrupt the temperature falls to near its maximum trough when the climate switches.

[iii]     Olga N. Solomina et al., “Holocene glacier fluctuations.” Quaternary Science Reviews. Volume 111, 2015, 9-34. https://doi.org/10.1016/j.quascirev.2014.11.018.

[iv]     C. Andersen et al., “A highly unstable Holocene climate in the subpolar North Atlantic: evidence from diatoms.” Quaternary Science Reviews, Volume 23, Issues 20–22, 2004, 2155-2166. https://doi.org/10.1016/j.quascirev.2004.08.004.

[v]      H. Wanner et al., “Structure and origin of Holocene cold events.” Quaternary Science Reviews (2011), doi:10.1016/j.quascirev.2011.07.010.

[vi]     Robert K. Booth et al., “A severe centennial-scale drought in midcontinental North America 4200 years ago and apparent global linkages.” The Holocene. Volume 15, Issue 3, 321 – 328. 2005. https://doi.org/10.1191/0959683605hl825ft.

[vii]    J. Stanley et al., 2003, “Nile flow failure at the end of the Old Kingdom, Egypt: Strontium isotopic and petrologic evidence.” Geoarchaeology, 18: 395-402. doi:10.1002/gea.10065.

[viii]   Ann Gibbons, “How the Akkadian Empire Was Hung Out to Dry”. Science 20 Aug 1993: Volume 261, Issue 5124, DOI: 10.1126/science.261.5124.985.

[ix]     Jianjun Wang, “The abrupt climate change near 4,400 year BP on the cultural transition in Yuchisi, China and its global linkage.” Scientific Reports | 6:27723 | DOI: 10.1038/srep27723. https://www.nature.com/articles/srep27723.pdf.

The slowest ice age descent in two million years (Global)

The slowest ice age descent in two million years (Global)

The first 2,100 years of temperature data after a climate optimum was extracted for the last 34 glacial cycles, and was rebased to zero degrees and zero time. The temperature declined by 0.610C after the Holocene Climate Optimum, which was 1.260C above the average of all other glacial cycles in 2,026,800 years.[i]

The temperature decline since the Holocene Climate Optimum 2,100 years after the Holocene Climate Optimum (global) is the smallest decline compared with all glacial cycles in the past 2,026,800 years. While this current global ice age inception temperature decline is the biggest outlier (i.e., slowest to cool), it is not a statistically significant outlier.

This data analysis suggests the odds are greater for a change to a global cooling phase than remaining in a warming phase during the 21st century.

Click on this page and download a free copy of my book “Revolution: Ice Age Re-Entry,” and read more about this topic in Chapter 3.

[i]       Data: R. Bintanja and R.S.W. van de Wal, “North American ice-sheet dynamics and the onset of 100,000-year glacial cycles.” Nature, Volume 454, 869-872, 14 August 2008. doi:10.1038/nature07158. National Centers for Environmental Information, NESDIS, NOAA, U.S. Department of Commerce. Global 3Ma Temperature, Sea Level, and Ice Volume Reconstructions. https://www.ncdc.noaa.gov/paleo-search/study/11933. Downloaded 10/27/2015. 

The slowest ice age descent in 800,000 years (Antarctica)

The slowest ice age descent in 800,000 years (Antarctica)

Ice core temperature data from Antarctica’s EPICA Dome C reveals that the temperature has only declined by 1.20C (top left figure) since the Holocene Climate Optimum 10,527 years ago. The comparator group of eight previous glacial cycles declined on average by 4.30C, 10,500 years after their respective climate optima (red triangle shapes).

The temperature decline since the Holocene Climate Optimum 10,500 years after the Antarctic’s Holocene Climate Optimum is the smallest decline compared with all glacial cycles in the past 800,000 years.[i] While this current Antarctic ice age inception temperature decline is the biggest outlier (i.e., slowest to cool), it is not a statistically significant outlier.

This data analysis suggests the odds are greater for a change to an Antarctic cooling phase than remaining in a warming phase during the 21st century.

Click on this page and download a free copy of my book “Revolution: Ice Age Re-Entry,” and read more about this topic in Chapter 3.

[i]       J.V. Jouzel et al., 2007, “Orbital and Millennial Antarctic Climate Variability over the Past 800,000 Years.” Science, Volume 317, No. 5839, 793-797, 10 August 2007. National Centers for Environmental Information, NESDIS, NOAA, U.S. Department of Commerce. EPICA Dome C – 800KYr Deuterium Data and Temperature Estimates. https://www.ncdc.noaa.gov/paleo/study/6080. Download data: Downloaded 08/02/2016.

The anatomy of a glacial cycle

The anatomy of a glacial cycle

During the last 1 million years the average glacial cycle has lasted for 92,900 years, the average interglacial period was 18,200 years long, and the interglacial temperature rose on average 13.50C (global data). The average glacial period, or period of freezing, lasted about 74,700 years, from the climate optimum to the next glacial maximum.[i]

Each glacial cycle displays recurring phases and common points of reference such as a climate optimum, a glacial maximum, an interglacial period, and a first main trough after the climate optimum. Interglacial periods are warming phases that extend from the glacial maximum (i.e., peak of the ice age) to the climate optimum. The glacial maximum represents the lowest temperature of the glacial cycle, during which the maximum ice mass and lowest sea levels exist. A climate optimum represents the highest temperature period of the glacial cycle at the end of the interglacial period, during which ice mass is at its lowest and sea level is at its highest. Ice ages start after the climate optimum.

Click on this page and download a free copy of my book “Revolution: Ice Age Re-Entry,” and read more about this topic in Chapter 3.

[i]       Bintanja, R. and R.S.W. van de Wal, “North American ice-sheet dynamics and the onset of 100,000-year glacial cycles.” Nature, Volume 454, 869-872, 14 August 2008. doi:10.1038/nature07158. National Centers for Environmental Information, NESDIS, NOAA, U.S. Department of Commerce. Global 3Ma Temperature, Sea Level, and Ice Volume Reconstructions. https://www.ncdc.noaa.gov/paleo-search/study/11933. Downloaded 10/27/2015.

Global warming started in 1700 CE before significant human activity

Global warming started in 1700 CE before significant human activity

Global warming started in 1700 before significant human activity. The rise in carbon dioxide (CO2) concentrations lags the global temperature rise, while CO2 does not track decadal-scale climate change (i.e., the temperature ups and downs). The Intergovernmental Panel on Climate Change (IPCC) “anthropogenic global warming” story started after 1880 and is a partial fragment of this natural global warming phase.

The 1700–2016 CE centennial-scale warming phase was the most extreme statistical “outlier” climate oscillation in 8,000 years. Even at 2016’s global warming temperature peak, the Arctic temperatures were still 2-4C lower than at the Holocene Climate Optimum 8,000 years ago.[i],[ii],[iii] Today’s temperature is not the highest on record, as claimed by the IPCC.[iv]

Figure A) above: The Northern Hemisphere temperature anomaly highlights a strong inverse correlation with the 18-year moving average Beryllium-10 concentration anomaly (“Beryllium-10”, is a proxy for solar activity). In 1711, the 18-year moving average Beryllium-10 began its decline phase (i.e., coinciding with an increase in solar activity). The temperature rise began two years later in 1713, which was the lowest temperature since the Holocene Climate Optimum. Figure A tells us the temperature lagged behind the rise in solar activity.

The use of an 18-year moving average for the Beryllium-10 concentration anomaly means the temperature, in reality, lagged the solar activity by at least one 11-year solar cycle (see citation for why).[v] These two parameters also well tracked one another’s up and down variations, putatively supporting a cause-and-effect relationship.

By contrast, since 1713 the rising carbon dioxide concentration has poorly tracked the Northern Hemisphere temperature volatility on multi-annual and decade time-scales (see Figure B). This indicates carbon dioxide is consequential to, and not causative of, the 1700-2000 temperature rise.[vi]

The above conclusion that carbon dioxide follows (i.e., does not cause) the temperature rise is fully aligned with the science of carbon dioxide and earth’s climate. This science tells us the historical global temperature changes preceded changes in carbon dioxide concentrations by many centuries on glacial cycle time scales.[vii],[viii],[ix],[x]

On multi-decade timescales the carbon dioxide concentration rise lags the temperature rise by many months.[xi] This means that global mean land surface, ocean surface, and stratospheric temperature changes precede changes in atmospheric carbon dioxide concentration (as Figure B indicates). One of these publications concludes that the elevated atmospheric carbon dioxide results from ocean degassing due to warmer oceans (plus human activity) consequent to increased solar activity.[xii]

Click on this page and download a free copy of my book “Revolution: Ice Age Re-Entry,” and read more about this topic in Chapters 4 and 1-2.

Citations:

[i]       Nicolaj K. Larsen et al., “The response of the southern Greenland ice sheet to the Holocene thermal maximum.” Geology ; 43 (4): 291–294. doi: https://doi.org/10.1130/G36476.1.

[ii]       D.S. Kaufman et al., “Holocene thermal maximum in the western Arctic (0–1800W).” Quaternary Science Reviews 23 (2004) 529–560.

[iii]      J.P. Briner et al., “Holocene climate change in Arctic Canada and Greenland.” Quaternary Science Reviews (2016), http://dx.doi.org/10.1016/j.quascirev.2016.02.010.

[iv]      Highest temperature on record. IPCC, Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996 pages [Exposé: See page 288. The IPCC tells us the 1998 global mean air temperature was the highest on record until 2005.].

[v]      This 11-year solar cycle lag (approximate) is composed of 9 years (i.e., half of a 18-year moving average), plus a two year lag in the temperature rise (behind the Beryllium-10 rise), plus one year before the newly produced Beryllium-10 in the upper atmosphere reaches earth’s surface where it can be incorporated in ice cores (and thus be measured)(Beryllium-10 atmospheric residence time: R.C. Finkel and K. Nishiizumi, 1997, “Beryllium 10 concentrations in the Greenland Ice Sheet Project 2 ice core from 3–40 ka.” J. Geophys. Res., 102(C12), 26699–26706, doi: 10.1029/97JC01282).

[vi]     Data: (1) A.M. Berggren et al., 2009, “A 600-year annual 10Be record from the NGRIP ice core, Greenland.” Geophysical Research Letters, 36, L11801, doi:10.1029/2009GL038004. National Centers for Environmental Information, NESDIS, NOAA, U.S. Department of Commerce. North GRIP – 600 Year Annual 10Be Data. https://www.ncdc.noaa.gov/paleo-search/study/8618. Downloaded 05/05/2018. (2) T. Kobashi et al., 2013, “Causes of Greenland temperature variability over the past 4000 years: implications for northern hemispheric temperature changes.” Climate of the Past, 9(5), 2299-2317. doi: 10.5194/cp-9-2299-2013. National Centers for Environmental Information, NESDIS, NOAA, U.S. Department of Commerce. Northern Hemisphere 4000 Year Temperature Reconstructions. https://www.ncdc.noaa.gov/paleo/study/15535. Downloaded 05/05/2018. (3) Etheridge, D.M., et al., 2001, “Law Dome Atmospheric CO2 Data,” IGBP PAGES/World Data Center for Paleoclimatology. Data Contribution Series #2001-083. NOAA/NGDC Paleoclimatology Program, Boulder CO, USA. https://www1.ncdc.noaa.gov/pub/data/paleo/icecore/antarctica/law/law2006.xls. Downloaded 28 August 2018. Personal Research: A 18-year moving average of the Beryllium-10 concentration anomaly (relative to the 1960-1986 average) and carbon dioxide concentration anomaly (relative to the 1961-1990 average) were rendered from the raw data and plotted against the Northern Hemisphere temperature anomaly (relative to the 1961-1990 average) to create Figures 4.3.A and B.]

[vii]    Manfred Mudelsee, “The phase relations among atmospheric CO2 content, temperature and global ice volume over the past 420 ka.” Quaternary Science Reviews 20 (2001) 583-58.

[viii]   Eric Monnin et al., “Atmospheric CO2 Concentrations over the Last Glacial Termination.” By Science 05 Jan 2001: 112-114.

[ix]     N. Caillon et al., 2003, “Timing of atmospheric CO2 and Antarctic temperature changes across Termination III.” Science 299: 1728-1731.

[x]      H. Fischer et al., 1999, “Ice core records of atmospheric CO2 around the last three glacial terminations.” Science, 283, 1712-1714.

[xi]     Ole Humlum et al., “The phase relation between atmospheric carbon dioxide and global temperature.” Global and Planetary Change. Volume 100, January 2013, 51-69.

[xii]    Ole Humlum et al., “The phase relation between atmospheric carbon dioxide and global temperature.” Global and Planetary Change. Volume 100, January 2013, 51-69.

Pin It on Pinterest